On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
نویسندگان
چکیده
Let Γn and Λn be the n-dimensional Fibonacci cube and Lucas cube, respectively. The domination number γ of Fibonacci cubes and Lucas cubes is studied. In particular it is proved that γ(Λn) is bounded below by ⌈ Ln−2n n−3 ⌉ , where Ln is the n-th Lucas number. The 2-packing number ρ of these cubes is also studied. It is proved that ρ(Γn) is bounded below by 2 blg nc 2 −1 and the exact values of ρ(Γn) and ρ(Λn) are obtained for n ≤ 10. It is also shown that Aut(Γn) ' Z2.
منابع مشابه
The (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملOn domination-type invariants of Fibonacci cubes and hypercubes
The Fibonacci cube Γn is the subgraph of the n-dimensional cube Qn induced by the vertices that contain no two consecutive 1s. Using integer linear programming, exact values are obtained for γt(Γn), n ≤ 12. Consequently, γt(Γn) ≤ 2Fn−10 + 21Fn−8 holds for n ≥ 11, where Fn are the Fibonacci numbers. It is proved that if n ≥ 9, then γt(Γn) ≥ d(Fn+2 − 11)/(n− 3)e−1. Using integer linear programmin...
متن کاملخواص متریک و ترکیبیاتی مکعبهای فیبوناتچی و لوکاس
An n-dimensional hypercube, Q_n, is a graph in which vertices are binary strings of length n where two vertices are adjacent if they differ in exactly one coordinate. Hypercubes and their subgraphs have a lot of applications in different fields of science, specially in computer science. This is the reason why they have been investigated by many authors during the years. Some of their subgraphs ...
متن کاملOn median nature and enumerative properties of Fibonacci-like cubes
Fibonacci cubes, extended Fibonacci cubes, and Lucas cubes are induced subgraphs of hypercubes 9 defined in terms of Fibonacci strings. It is shown that all these graphs are median. Several enumeration results on the number of their edges and squares are obtained. Some identities involving Fibonacci 11 and Lucas numbers are also presented. © 2005 Published by Elsevier B.V. 13
متن کاملCube polynomial of Fibonacci and Lucas cubes
The cube polynomial of a graph is the counting polynomial for the number of induced k-dimensional hypercubes (k ≥ 0). We determine the cube polynomial of Fibonacci cubes and Lucas cubes, as well as the generating functions for the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are obtained, in particular they can be expressed with convolved Fibonac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 61 شماره
صفحات -
تاریخ انتشار 2011